X-Git-Url: http://git.ithinksw.org/extjs.git/blobdiff_plain/3789b528d8dd8aad4558e38e22d775bcab1cbd36..f562e4c6e5fac7bcb445985b99acbea4d706e6f0:/docs/source/Draw.html diff --git a/docs/source/Draw.html b/docs/source/Draw.html index 31a8d653..845fc69d 100644 --- a/docs/source/Draw.html +++ b/docs/source/Draw.html @@ -3,8 +3,8 @@
/* - * @class Ext.draw.Draw +/** + * @class Ext.draw.Draw * Base Drawing class. Provides base drawing functions. + * @private */ - Ext.define('Ext.draw.Draw', { /* Begin Definitions */ @@ -113,12 +113,12 @@ Ext.define('Ext.draw.Draw', { b && params.push(+b); }); if (name == "m" && params.length > 2) { - data.push([b].concat(params.splice(0, 2))); + data.push([b].concat(Ext.Array.splice(params, 0, 2))); name = "l"; b = (b == "m") ? "l" : "L"; } while (params.length >= paramCounts[name]) { - data.push([b].concat(params.splice(0, paramCounts[name]))); + data.push([b].concat(Ext.Array.splice(params, 0, paramCounts[name]))); if (!paramCounts[name]) { break; } @@ -348,9 +348,9 @@ Ext.define('Ext.draw.Draw', { points[i].shift(); point = points[i]; while (point.length) { - points.splice(i++, 0, ["C"].concat(point.splice(0, 6))); + Ext.Array.splice(points, i++, 0, ["C"].concat(Ext.Array.splice(point, 0, 6))); } - points.splice(i, 1); + Ext.Array.erase(points, i, 1); ln = points.length; } seg = points[i]; @@ -374,15 +374,15 @@ Ext.define('Ext.draw.Draw', { pp[i].shift(); var pi = pp[i]; while (pi.length) { - pp.splice(i++, 0, ["C"].concat(pi.splice(0, 6))); + Ext.Array.splice(pp, i++, 0, ["C"].concat(Ext.Array.splice(pi, 0, 6))); } - pp.splice(i, 1); + Ext.Array.erase(pp, i, 1); ii = Math.max(p.length, p2.length || 0); } }, fixM = function (path1, path2, a1, a2, i) { if (path1 && path2 && path1[i][0] == "M" && path2[i][0] != "M") { - path2.splice(i, 0, ["M", a2.x, a2.y]); + Ext.Array.splice(path2, i, 0, ["M", a2.x, a2.y]); a1.bx = 0; a1.by = 0; a1.x = path1[i][1]; @@ -783,27 +783,95 @@ Ext.define('Ext.draw.Draw', { }; }, - getAnchors: function (p1x, p1y, p2x, p2y, p3x, p3y, value) { + /** + * @private + * + * Calculates bezier curve control anchor points for a particular point in a path, with a + * smoothing curve applied. The smoothness of the curve is controlled by the 'value' parameter. + * Note that this algorithm assumes that the line being smoothed is normalized going from left + * to right; it makes special adjustments assuming this orientation. + * + * @param {Number} prevX X coordinate of the previous point in the path + * @param {Number} prevY Y coordinate of the previous point in the path + * @param {Number} curX X coordinate of the current point in the path + * @param {Number} curY Y coordinate of the current point in the path + * @param {Number} nextX X coordinate of the next point in the path + * @param {Number} nextY Y coordinate of the next point in the path + * @param {Number} value A value to control the smoothness of the curve; this is used to + * divide the distance between points, so a value of 2 corresponds to + * half the distance between points (a very smooth line) while higher values + * result in less smooth curves. Defaults to 4. + * @return {Object} Object containing x1, y1, x2, y2 bezier control anchor points; x1 and y1 + * are the control point for the curve toward the previous path point, and + * x2 and y2 are the control point for the curve toward the next path point. + */ + getAnchors: function (prevX, prevY, curX, curY, nextX, nextY, value) { value = value || 4; - var l = Math.min(Math.sqrt(Math.pow(p1x - p2x, 2) + Math.pow(p1y - p2y, 2)) / value, Math.sqrt(Math.pow(p3x - p2x, 2) + Math.pow(p3y - p2y, 2)) / value), - a = Math.atan((p2x - p1x) / Math.abs(p2y - p1y)), - b = Math.atan((p3x - p2x) / Math.abs(p2y - p3y)), - pi = Math.PI; - a = p1y < p2y ? pi - a : a; - b = p3y < p2y ? pi - b : b; - var alpha = pi / 2 - ((a + b) % (pi * 2)) / 2; - alpha > pi / 2 && (alpha -= pi); - var dx1 = l * Math.sin(alpha + a), - dy1 = l * Math.cos(alpha + a), - dx2 = l * Math.sin(alpha + b), - dy2 = l * Math.cos(alpha + b), - out = { - x1: p2x - dx1, - y1: p2y + dy1, - x2: p2x + dx2, - y2: p2y + dy2 - }; - return out; + var M = Math, + PI = M.PI, + halfPI = PI / 2, + abs = M.abs, + sin = M.sin, + cos = M.cos, + atan = M.atan, + control1Length, control2Length, control1Angle, control2Angle, + control1X, control1Y, control2X, control2Y, alpha; + + // Find the length of each control anchor line, by dividing the horizontal distance + // between points by the value parameter. + control1Length = (curX - prevX) / value; + control2Length = (nextX - curX) / value; + + // Determine the angle of each control anchor line. If the middle point is a vertical + // turnaround then we force it to a flat horizontal angle to prevent the curve from + // dipping above or below the middle point. Otherwise we use an angle that points + // toward the previous/next target point. + if ((curY >= prevY && curY >= nextY) || (curY <= prevY && curY <= nextY)) { + control1Angle = control2Angle = halfPI; + } else { + control1Angle = atan((curX - prevX) / abs(curY - prevY)); + if (prevY < curY) { + control1Angle = PI - control1Angle; + } + control2Angle = atan((nextX - curX) / abs(curY - nextY)); + if (nextY < curY) { + control2Angle = PI - control2Angle; + } + } + + // Adjust the calculated angles so they point away from each other on the same line + alpha = halfPI - ((control1Angle + control2Angle) % (PI * 2)) / 2; + if (alpha > halfPI) { + alpha -= PI; + } + control1Angle += alpha; + control2Angle += alpha; + + // Find the control anchor points from the angles and length + control1X = curX - control1Length * sin(control1Angle); + control1Y = curY + control1Length * cos(control1Angle); + control2X = curX + control2Length * sin(control2Angle); + control2Y = curY + control2Length * cos(control2Angle); + + // One last adjustment, make sure that no control anchor point extends vertically past + // its target prev/next point, as that results in curves dipping above or below and + // bending back strangely. If we find this happening we keep the control angle but + // reduce the length of the control line so it stays within bounds. + if ((curY > prevY && control1Y < prevY) || (curY < prevY && control1Y > prevY)) { + control1X += abs(prevY - control1Y) * (control1X - curX) / (control1Y - curY); + control1Y = prevY; + } + if ((curY > nextY && control2Y < nextY) || (curY < nextY && control2Y > nextY)) { + control2X -= abs(nextY - control2Y) * (control2X - curX) / (control2Y - curY); + control2Y = nextY; + } + + return { + x1: control1X, + y1: control1Y, + x2: control2X, + y2: control2Y + }; }, /* Smoothing function for a path. Converts a path into cubic beziers. Value defines the divider of the distance between points. @@ -874,7 +942,25 @@ Ext.define('Ext.draw.Draw', { }; }, + /** + * A utility method to deduce an appropriate tick configuration for the data set of given + * feature. + * + * @param {Number/Date} from The minimum value in the data + * @param {Number/Date} to The maximum value in the data + * @param {Number} stepsMax The maximum number of ticks + * @return {Object} The calculated step and ends info; When `from` and `to` are Dates, refer to the + * return value of {@link #snapEndsByDate}. For numerical `from` and `to` the return value contains: + * @return {Number} return.from The result start value, which may be lower than the original start value + * @return {Number} return.to The result end value, which may be higher than the original end value + * @return {Number} return.power The calculate power. + * @return {Number} return.step The value size of each step + * @return {Number} return.steps The number of steps. + */ snapEnds: function (from, to, stepsMax) { + if (Ext.isDate(from)) { + return this.snapEndsByDate(from, to, stepsMax); + } var step = (to - from) / stepsMax, level = Math.floor(Math.log(step) / Math.LN10) + 1, m = Math.pow(10, level), @@ -912,6 +998,119 @@ Ext.define('Ext.draw.Draw', { }; }, + /** + * A utility method to deduce an appropriate tick configuration for the data set of given + * feature when data is Dates. Refer to {@link #snapEnds} for numeric data. + * + * @param {Date} from The minimum value in the data + * @param {Date} to The maximum value in the data + * @param {Number} stepsMax The maximum number of ticks + * @param {Boolean} lockEnds If true, the 'from' and 'to' parameters will be used as fixed end values + * and will not be adjusted + * @return {Object} The calculated step and ends info; properties are: + * @return {Date} return.from The result start value, which may be lower than the original start value + * @return {Date} return.to The result end value, which may be higher than the original end value + * @return {Number} return.step The value size of each step + * @return {Number} return.steps The number of steps. + * NOTE: the steps may not divide the from/to range perfectly evenly; + * there may be a smaller distance between the last step and the end value than between prior + * steps, particularly when the `endsLocked` param is true. Therefore it is best to not use + * the `steps` result when finding the axis tick points, instead use the `step`, `to`, and + * `from` to find the correct point for each tick. + */ + snapEndsByDate: function (from, to, stepsMax, lockEnds) { + var selectedStep = false, scales = [ + [Ext.Date.MILLI, [1, 2, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500]], + [Ext.Date.SECOND, [1, 2, 3, 5, 10, 15, 30]], + [Ext.Date.MINUTE, [1, 2, 3, 5, 10, 20, 30]], + [Ext.Date.HOUR, [1, 2, 3, 4, 6, 12]], + [Ext.Date.DAY, [1, 2, 3, 7, 14]], + [Ext.Date.MONTH, [1, 2, 3, 4, 6]] + ], j, yearDiff; + + // Find the most desirable scale + Ext.each(scales, function(scale, i) { + for (j = 0; j < scale[1].length; j++) { + if (to < Ext.Date.add(from, scale[0], scale[1][j] * stepsMax)) { + selectedStep = [scale[0], scale[1][j]]; + return false; + } + } + }); + if (!selectedStep) { + yearDiff = this.snapEnds(from.getFullYear(), to.getFullYear() + 1, stepsMax, lockEnds); + selectedStep = [Date.YEAR, Math.round(yearDiff.step)]; + } + return this.snapEndsByDateAndStep(from, to, selectedStep, lockEnds); + }, + + + /** + * A utility method to deduce an appropriate tick configuration for the data set of given + * feature and specific step size. + * @param {Date} from The minimum value in the data + * @param {Date} to The maximum value in the data + * @param {Array} step An array with two components: The first is the unit of the step (day, month, year, etc). + * The second one is the number of units for the step (1, 2, etc.). + * @param {Boolean} lockEnds If true, the 'from' and 'to' parameters will be used as fixed end values + * and will not be adjusted + * @return {Object} See the return value of {@link #snapEndsByDate}. + */ + snapEndsByDateAndStep: function(from, to, step, lockEnds) { + var fromStat = [from.getFullYear(), from.getMonth(), from.getDate(), + from.getHours(), from.getMinutes(), from.getSeconds(), from.getMilliseconds()], + steps = 0, testFrom, testTo; + if (lockEnds) { + testFrom = from; + } else { + switch (step[0]) { + case Ext.Date.MILLI: + testFrom = new Date(fromStat[0], fromStat[1], fromStat[2], fromStat[3], + fromStat[4], fromStat[5], Math.floor(fromStat[6] / step[1]) * step[1]); + break; + case Ext.Date.SECOND: + testFrom = new Date(fromStat[0], fromStat[1], fromStat[2], fromStat[3], + fromStat[4], Math.floor(fromStat[5] / step[1]) * step[1], 0); + break; + case Ext.Date.MINUTE: + testFrom = new Date(fromStat[0], fromStat[1], fromStat[2], fromStat[3], + Math.floor(fromStat[4] / step[1]) * step[1], 0, 0); + break; + case Ext.Date.HOUR: + testFrom = new Date(fromStat[0], fromStat[1], fromStat[2], + Math.floor(fromStat[3] / step[1]) * step[1], 0, 0, 0); + break; + case Ext.Date.DAY: + testFrom = new Date(fromStat[0], fromStat[1], + Math.floor(fromStat[2] - 1 / step[1]) * step[1] + 1, 0, 0, 0, 0); + break; + case Ext.Date.MONTH: + testFrom = new Date(fromStat[0], Math.floor(fromStat[1] / step[1]) * step[1], 1, 0, 0, 0, 0); + break; + default: // Ext.Date.YEAR + testFrom = new Date(Math.floor(fromStat[0] / step[1]) * step[1], 0, 1, 0, 0, 0, 0); + break; + } + } + + testTo = testFrom; + // TODO(zhangbei) : We can do it better somehow... + while (testTo < to) { + testTo = Ext.Date.add(testTo, step[0], step[1]); + steps++; + } + + if (lockEnds) { + testTo = to; + } + return { + from : +testFrom, + to : +testTo, + step : (testTo - testFrom) / steps, + steps : steps + }; + }, + sorter: function (a, b) { return a.offset - b.offset; }, @@ -991,6 +1190,7 @@ Ext.define('Ext.draw.Draw', { } } }); +